# Existential Quantification

A statement about the existence of (at least) one element in a certain set of items.

For example:

There exists dogs which have exactly three legs.

A *negative* existential quantification states that there are objects to which the description does *not* apply.

For example:

There exist dogs which donothave exactly three legs.

## Description

A *positive* existential quantification is a proposition that is true for some (or at least one) of the elements that it refers to.

SomeXareY.

Or as logical formula:

`∃ 𝑥 ∈ 𝕏 : Y`

(there exists [at least] one 𝑥 in the set 𝕏 for which Y holds true).

A negative existential quantification describes the case where the characteristic does not hold:

`∃ 𝑥 ∈ 𝕏 : ¬X`

(there exists [at least] one 𝑥 in the set 𝕏 for which not-Y holds).

### Existential condition

While universal quantifications may refer to empty extensions, *existential quantifications* – as the name suggests – must always refer to an actually existing extension.

This can lead to the situation that when deriving existential from universal quantifications, it must first be proven that there exists at least *one* element of the extension set. Such auxiliary conditions are necessary, for example, for syllogisms such as Modus Barbari Show in Syllogism-Finder App or Modus Calemos Show in Syllogism-Finder App.

### Natural language

There are many ways that the *existential quantification* can be formulated in natural language, which is also what gives this form so much flexibility. The most common forms are:

*Some*A*are*[*not*] B.*There exist*A*which are*[*not*] B.*There exists at least one*A*which is*[*not*] B.- etc.

The properties of the *existential quantification* are independent from how it is formulated. E.g. also “some A are B” implies *existence*, etc.

## Identifier

In both logic and mathematics, the symbol `∃`

is used to denote existential quantification. This is usually pronounced as “there exists …”. For example:

`∃ 𝑛 ∈ ℕ : 𝑛² = 25`

(there exists at least one number 𝑛 which is Element of the set of natural numbers, for which it is true that 𝑛² is equal to 25)

To denote *negative* existential quantification, either the `¬`

(“not”) sign is used, or any other symbol expressing negation or inequality, e.g.:

`∃ 𝑛 ∈ ℕ : 𝑛² ≠ 25`

(there exists at least one number 𝑛 which is Element of the set of natural numbers, for which it is true that 𝑛² isnotequal to 25)

## See also

## More information

- Existential quantification on
*Wikipedia*